Published in

Cell Press, Chemistry and Biology, 4(13), p. 387-397, 2006

DOI: 10.1016/j.chembiol.2006.02.002

Links

Tools

Export citation

Search in Google Scholar

Functional Analysis of the Validamycin Biosynthetic Gene Cluster and Engineered Production of Validoxylamine A

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A 45 kb DNA sequencing analysis from Streptomyces hygroscopicus 5008 involved in validamycin A (VAL-A) biosynthesis revealed 16 structural, 2 regulatory, and 5 genes related to transport, transposition/integration, tellurium resistance, and another 4 genes with no obvious identity. The VAL-A biosynthetic pathway was proposed, with assignment of the required genetic functions confined in the sequenced region. A cluster of eight reassembled genes was found to support the VAL-A synthesis in a heterologous host, S. lividans 1326. In vivo inactivation of the putative glycosyltransferase gene (valG) abolished the final attachment of glucose for VAL production, and resulted in the accumulation of the VAL-A precursor, validoxylamine, while the normal production of VAL-A could be restored by complementation with valG. The role of ValG in the glycosylation of validoxylamine to VAL-A was demonstrated in vitro by enzymatic assay.