Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - An Asian Journal, 8(7), p. 1795-1802, 2012

DOI: 10.1002/asia.201200144

Links

Tools

Export citation

Search in Google Scholar

Highly Catalytic Carbon Nanotube/Pt Nanohybrid-Based Transparent Counter Electrode for Efficient Dye-Sensitized Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Low-cost transparent counter electrodes (CEs) for efficient dye-sensitized solar cells (DSSCs) are prepared by using nanohybrids of carbon nanotube (CNT)-supported platinum nanoparticles as highly active catalysts. The nanohybrids, synthesized by an ionic-liquid-assisted sonochemical method, are directly deposited on either rigid glass or flexible plastic substrates by a facile electrospray method for operation as CEs. Their electrochemical performances are examined by cyclic voltammetry, current density-voltage characteristics, and electrochemical impedance spectroscopy (EIS) measurements. The CNT/Pt hybrid films exhibit high electrocatalytic activity for I(-)/I(3)(-) with a weak dependence on film thickness. A transparent CNT/Pt hybrid CE film about 100 nm thick with a transparency of about 70% (at 550 nm) can result in a high power conversion efficiency (η) of over 8.5%, which is comparable to that of pyrolysis platinum-based DSSCs, but lower cost. Furthermore, DSSC based on flexible CNT/Pt hybrid CE using indium-doped tin oxide-coated polyethylene terephthalate as the substrate also exhibits η=8.43% with J(sc)=16.85 mA cm(-2), V(oc)=780 mV, and FF=0.64, and this shows great potential in developing highly efficient flexible DSSCs.