Elsevier, Tectonophysics, 1-4(388), p. 225-238
DOI: 10.1016/j.tecto.2004.04.031
Full text: Download
Theoretical considerations (Snell's law) suggest that low-velocity fanomalies are undersampled and therefore should be poorly resolved by inversion schemes based on ray-tracing methods. A synthetic study considering a 40×20 m low-velocity anomaly (300 m/s) placed at the center of a 400×50 m block with gradient background velocity model (from 3000 m/s at the surface to 4000 m/s at the base) indicates that the low ray density in ray-tracing coverage diagrams of tomographic inversion studies can be used as evidence for the existence of low-velocity anomalies. Combined normal incidence seismic reflection images and the velocity models obtained by tomographic inversions of first-arrival travel times form an efficient scheme to resolve low-velocity anomalies such as fracture zones. Furthermore, the velocity models derived from tomographic inversions are used in a wave equation datuming algorithm to account for statics caused by a strongly laterally variable shallow surface (weathering) layer and provide seismic reflection images of fracture zones (low-velocity anomaly) within a granitic pluton.