Published in

Wiley, Functional Ecology, 3(18), p. 322-329, 2004

DOI: 10.1111/j.0269-8463.2004.00828.x

Links

Tools

Export citation

Search in Google Scholar

Growth and tissue nitrogen of epiphytic Atlantic bryophytes: Effects of increased and decreased atmospheric N deposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summary Atlantic bryophytes are of European conservation importance, yet the effect on them of excess atmospheric nitrogen is relatively unknown. This study assesses the effects of increased atmospheric N deposition on the growth and tissue N of epiphytic Atlantic bryophytes, and their potential to recover following a decline in N deposition. The N received in stemflow by bryophytes at two sites was measured and compared to model predictions. Four species of epiphytic bryophytes (Isothecium myosuroides, Dicranum scoparium, Frullania tamarisci and Ulota crispa), typical of Atlantic Oak woods, were studied in a 12-month reciprocal transplant experiment between a pristine Oak woodland receiving a modelled atmospheric deposition of 12 kg N ha−1 year−1 and a polluted one receiving 54 kg N ha−1 year−1. Tissue N concentration increased and growth declined following an increase in atmospheric N deposition in all species except Ulota crispa. Conversely, tissue N concentration decreased and growth increased in Frullania tamarisci following a decrease in atmospheric N deposition, with similar non-significant patterns in the other species. The reciprocal transplants indicate a detrimental effect of increased N deposition on the bryophyte species studied. The study indicated recovery following a decrease in atmospheric N deposition, but the responses caused by decreased N deposition were smaller than those due to increased N deposition. This suggests that the time-scale for recovery of bryophytes from excess N deposition is longer than the timescale of nitrogen impacts. Functional Ecology (2004) 18, 322–329