Published in

American Association of Immunologists, The Journal of Immunology, 6(184), p. 3260-3268, 2010

DOI: 10.4049/jimmunol.0903454

Links

Tools

Export citation

Search in Google Scholar

Vγ9Vδ2 T Lymphocytes Efficiently Recognize and Kill Zoledronate-Sensitized, Imatinib-Sensitive, and Imatinib-Resistant Chronic Myelogenous Leukemia Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Imatinib mesylate (imatinib), a competitive inhibitor of the BCR-ABL tyrosine kinase, is highly effective against chronic myelogenous leukemia (CML) cells. However, because 20-30% of patients affected by CML display either primary or secondary resistance to imatinib, intentional activation of Vgamma9Vdelta2 T cells by phosphoantigens or by agents that cause their accumulation within cells, such as zoledronate, may represent a promising strategy for the design of a novel and highly innovative immunotherapy capable to overcome imatinib resistance. In this study, we show that Vgamma9Vdelta2 T lymphocytes recognize, trogocytose, and efficiently kill imatinib-sensitive and -resistant CML cell lines pretreated with zoledronate. Vgamma9Vdelta2 T cell cytotoxicity was largely dependent on the granule exocytosis- and partly on TRAIL-mediated pathways, was TCR-mediated, and required isoprenoid biosynthesis by zoledronate-treated CML cells. Importantly, Vgamma9Vdelta2 T cells from patients with CML can be induced by zoledronate to develop antitumor activity against autologous and allogeneic zoledronate-treated leukemia cells, both in vitro and when transferred into immunodeficient mice in vivo. We conclude that intentional activation of Vgamma9Vdelta2 T cells by zoledronate may substantially increase their antileukemia activities and represent a novel strategy for CML immunotherapy.