Published in

American Chemical Society, Journal of Physical Chemistry C, 3(112), p. 650-653, 2008

DOI: 10.1021/jp710362r

Links

Tools

Export citation

Search in Google Scholar

Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon nanotubes (CNTs) are extremely sensitive to the electronic perturbations from environmental gases. However, the electrical detection of carbon monoxide (CO) is still a challenge. Here we show that 1 ppm of CO can be electrically detected at room temperature using a CNT resistor and the detection is proposed related to the sidewall functionalities (COOH). A simple all-CNT electronic nose composed of two resistors (or one resistor plus one transistor) is able to differentiate CO and other oxidative gases (for example NO and NO2). The electronic nose is working on both conventional SiO2/Si and flexible substrates.