Published in

American Dairy Science Association, Journal of Dairy Science, 11(95), p. 6801-6805

DOI: 10.3168/jds.2012-5601

Links

Tools

Export citation

Search in Google Scholar

Short communication: CSN1S1-CSN3 (αS1-κ-casein) composite genotypes affect detailed milk protein composition of Mediterranean water buffalo

Journal article published in 2012 by V. Bonfatti, M. Giantin, M. Gervaso, R. Rostellato, A. Coletta, M. Dacasto, P. Carnier ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The aim of the study was to investigate the effect of composite CSN1S1-CSN3 [α(S1)-κ-casein (CN)] genotype on milk protein composition in Mediterranean water buffalo. Content of α(S1)-CN, α(S2)-CN, β-CN, γ-CN, κ-CN, glycosylated and unglycosylated κ-CN, α-lactalbumin, and β-lactoglobulin was measured by reversed-phase HPLC using 621 individual milk samples. Genotypes at CSN1S1 and CSN3 were also obtained by reversed-phase HPLC. Two alleles were detected at CSN1S1 (corresponding to the A and B variants, O62823: p.Leu193Ser,) and at CSN3 (corresponding to the X1 and X2 variants, CAP12622.1: p.Ile156Thr). Increased proportions of α(S1)-CN in total casein (TCN) were associated with genotypes carrying CSN1S1 A. Genotypes associated with a marked decrease of the proportion of α(S1)-CN in TCN (composite genotypes AB-X1X1 and BB-X1X2) were associated with marked increases in the proportion of α(S2)-CN. In addition, composite genotypes carrying the X1 allele at CSN3 were associated with a greater proportion of α(S2)-CN in TCN relative to those carrying CSN3 X2. Composite genotypes greatly affected also the variability of ratios of κ-CN to TCN, with genotypes carrying the X1 allele at CSN3 being associated with decreased ratios. The decreased content of glycosylated κ-CN associated with CSN3 X1 was responsible for the overall lower content of total κ-CN in milk of X1-carrying animals. Increasing the frequency of specific genotypes might be an effective way to alter milk protein composition, namely the proportion of α(S1)-CN, α(S2)-CN, and κ-CN in TCN, and the degree of glycosylation of κ-CN.