2013 13th UK Workshop on Computational Intelligence (UKCI)
DOI: 10.1109/ukci.2013.6651283
Full text: Download
Reconstructing biological networks is vital in developing our understanding of nature. Biological systems of particular interest are bacteria that can produce antibiotics during their life cycle. Such an organism is the soil dwelling bacterium Streptomyces coelicolor. Although some of the genes involved in the production of antibiotics in the bacterium have been identified, how these genes are regulated and their specific role in antibiotic production is unknown. By understanding the network structure and gene regulation involved it may be possible to improve the production of antibiotics from this bacterium. Here we use an evolutionary algorithm to optimise parameters in the gene regulatory network of a sub-set of genes in S. coelicolor involved in antibiotic production. We present some of our preliminary results based on real gene expression data for continuous and discrete modelling techniques.