Published in

American Diabetes Association, Diabetes Care, 5(37), p. 1375-1383, 2014

DOI: 10.2337/dc13-1847

Links

Tools

Export citation

Search in Google Scholar

Profiling of Circulating MicroRNAs Reveals Common MicroRNAs Linked to Type 2 Diabetes That Change With Insulin Sensitization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE This study sought to identify the profile of circulating microRNAs (miRNAs) in type 2 diabetes (T2D) and its response to changes in insulin sensitivity. RESEARCH DESIGN AND METHODS The circulating miRNA profile was assessed in a pilot study of 12 men: 6 with normal glucose tolerance (NGT) and 6 T2D patients. The association of 10 circulating miRNAs with T2D was cross-sectionally validated in an extended sample of 45 NGT vs. 48 T2D subjects (65 nonobese and 28 obese men) and longitudinally in 35 T2D patients who were recruited in a randomized, double-blinded, and placebo-controlled 3-month trial of metformin treatment. Circulating miRNAs were also measured in seven healthy volunteers before and after a 6-h hyperinsulinemic-euglycemic clamp and insulin plus intralipid/heparin infusion. RESULTS Cross-sectional studies disclosed a marked increase of miR-140-5p, miR-142-3p, and miR-222 and decreased miR-423-5p, miR-125b, miR-192, miR-195, miR-130b, miR-532-5p, and miR-126 in T2D patients. Multiple linear regression analyses revealed that miR-140-5p and miR-423-5p contributed independently to explain 49.5% (P < 0.0001) of fasting glucose variance after controlling for confounders. A discriminant function of four miRNAs (miR-140-5p, miR-423-5p, miR-195, and miR-126) was specific for T2D with an accuracy of 89.2% (P < 0.0001). Metformin (but not placebo) led to significant changes in circulating miR-192 (49.5%; P = 0.022), miR-140-5p (−15.8%; P = 0.004), and miR-222 (−47.2%; P = 0.03), in parallel to decreased fasting glucose and HbA1c. Furthermore, while insulin infusion during clamp decreased miR-222 (−62%; P = 0.002), the intralipid/heparin mixture increased circulating miR-222 (163%; P = 0.015) and miR-140-5p (67.5%; P = 0.05). CONCLUSIONS This study depicts the close association between variations in circulating miRNAs and T2D and their potential relevance in insulin sensitivity.