Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Computational Intelligence Magazine, 3(4), p. 62-76, 2009

DOI: 10.1109/mci.2009.933094

Links

Tools

Export citation

Search in Google Scholar

A systems approach to evolutionary multiobjective structural optimization and beyond

Journal article published in 2009 by Yaochu Jin ORCID, Bernhard Sendhoff
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Multiobjective evolutionary algorithms (MOEAs) have shown to be effective in solving a wide range of test problems. However, it is not straightforward to apply MOEAs to complex real-world problems. This paper discusses the major challenges we face in applying MOEAs to complex structural optimization, including the involvement of time-consuming and multi-disciplinary quality evaluation processes, changing environments, vagueness in formulating criteria formulation, and the involvement of multiple sub-systems. We propose that the successful tackling of all these aspects give birth to a systems approach to evolutionary design optimization characterized by considerations at four levels, namely, the system property level, temporal level, spatial level and process level. Finally, we suggest a few promising future research topics in evolutionary structural design that consist in the necessary steps towards a life-like design approach, where design principles found in biological systems such as self-organization, self-repair and scalability play a central role.