Published in

Annual Reviews, Annual Review of Plant Biology, 1(64), p. 781-805, 2013

DOI: 10.1146/annurev-arplant-050312-120235

Links

Tools

Export citation

Search in Google Scholar

Transport and Metabolism in Legume-Rhizobia Symbioses

Journal article published in 2013 by Michael Udvardi ORCID, Philip S. Poole
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Symbiotic nitrogen fixation by rhizobia in legume root nodules injects approximately 40 million tonnes of nitrogen into agricultural systems each year. In exchange for reduced nitrogen from the bacteria, the plant provides rhizobia with reduced carbon and all the essential nutrients required for bacterial metabolism. Symbiotic nitrogen fixation requires exquisite integration of plant and bacterial metabolism. Central to this integration are transporters of both the plant and the rhizobia, which transfer elements and compounds across various plant membranes and the two bacterial membranes. Here we review current knowledge of legume and rhizobial transport and metabolism as they relate to symbiotic nitrogen fixation. Although all legume-rhizobia symbioses have many metabolic features in common, there are also interesting differences between them, which show that evolution has solved metabolic problems in different ways to achieve effective symbiosis in different systems. Expected final online publication date for the Annual Review of Plant Biology Volume 64 is April 29, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.