Published in

Inter Research, Aquatic Microbial Ecology, 2(63), p. 123-131, 2011

DOI: 10.3354/ame01486

Links

Tools

Export citation

Search in Google Scholar

Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Polyunsaturated aldehydes (PUAs), produced as secondary metabolites by diatoms, have been shown to induce toxic effects on a variety of organisms, including copepods and phyto- and bacterioplankton. However, the nature of and the players in this interaction remain poorly under- stood. We tested the effect of 3 PUAs commonly produced by marine diatoms—2E,4E/Z-heptadienal (HEPTA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-decadienal (DECA) and a mix of HEPTA and OCTA (MIX)—on a natural bacterial community from a coastal area of the NW Mediterranean Sea (Blanes Bay, Spain). Little effect on total or relative cell abundance or bulk bacterial production was observed after 6 or 24 h exposure to 7.5 nM of the 3 different PUAs for the different bacterial phylogenetic groups (Gammaproteobacteria, Bacteroidetes, Rhodobacteraceae and SAR11), assessed by catalysed reporter deposition (CARD)-fluorescence in situ hybridisation (FISH). Metabolic activity, i.e. single- cell activity as determined by microautoradiography combined with CARD-FISH (MAR-CARD- FISH), was least affected by the addition of single PUAs in Gammaproteobacteria, markedly in Bac- teroidetes and most markedly in Rhodobacteraceae, leading to a decrease in Rhodobacteraceae abundance by 21% (by 38% of the active cells assessed by leucine uptake) compared to the control. Bacteroidetes, although markedly affected in single-cell activity, were the most abundant group (54% of total cell counts). The addition of a mixture of OCTA and HEPTA produced a more pro- nounced decrease in the metabolic activity of all groups than the incubation with the single PUAs, suggesting a synergistic effect. Our results demonstrate that PUAs have a differential effect on the single-cell activity of distinct bacterial groups in natural communities. PUAs may therefore play an important role in shaping bacterial community composition by conferring a competitive advantage to PUA-resistant groups, allowing them to preferentially use the organic matter released by diatoms.