Published in

American Chemical Society, ACS Nano, 8(5), p. 6403-6409, 2011

DOI: 10.1021/nn201573m

Links

Tools

Export citation

Search in Google Scholar

Crystallographically Aligned Carbon Nanotubes Grown on Few-Layer Graphene Films

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon nanotubes are grown on few-layer graphene films using chemical vapor deposition without a carbon feedstock gas. We find that the nanotubes show a striking alignment to specific crystal orientations of the few-layer graphene films. The nanotubes are oriented predominantly at 60 degree intervals and are offset 30 degrees from crystallographically oriented etch tracks, indicating alignment to the armchair axes of the few-layer graphene films. Nanotubes grown on various thicknesses of few-layer graphene under identical process conditions show that the thinnest films, in the sub-6 atomic layer regime, demonstrate significantly improved crystallographic alignment. Intricate crystallographic patterns are also observed having sharp kinks with bending radii less than the ∼10 nm lateral resolution of the electron and atomic force microscopy used to image them. Some of these kinks occur independently without interactions between nanotubes while others result when two nanotubes intersect. These intersections can trap nanotubes between two parallel nanotubes resulting in crystallographic back and forth zigzag geometries. These interactions suggest a tip-growth mechanism such that the catalyst particles remain within several nanometers of the few-layer graphene surface as they move leaving a nanotube in their wake.