Published in

American Institute of Physics, Applied Physics Letters, 20(95), p. 203502

DOI: 10.1063/1.3263713

Links

Tools

Export citation

Search in Google Scholar

Enhanced nonvolatile resistive switching in dilutely cobalt doped TiO2

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Incorporation of dilute concentration of dopant having a valence state different than that of the host cation enables controlled incorporation proximity vacancy defects for local charge balance. Since nonvolatile resistive switching is a phenomenon tied to such defects, it can be expected to be influenced by dilute doping. In this work, we demonstrate that enhanced nonvolatile resistive switching is realized in dilutely cobalt doped TiO2 films grown at room temperature. We provide essential characterizations and analyses. We suggest that the oxygen vacancies in the proximity of immobile dopants provide well distributed anchors for the development of systematic filamentary tracks.