Published in

American Institute of Physics, Applied Physics Letters, 18(77), p. 2831

DOI: 10.1063/1.1320869

Links

Tools

Export citation

Search in Google Scholar

Smallest diameter carbon nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Mass-selected carbon ion beam deposition (MSIBD) was used to demonstrate that the diameter of a carbon nanotube could be as small as 0.4 nm, the theoretical limit predicted but never experimentally reached so far. The deposition was performed at an elevated temperature much lower than the high temperatures (800–1000 °C) needed for deposition of carbon nanotubes by conventional methods. High-resolution transmission electron microscopy showed that the combination of the stress induced by the ion impact and the C migration at the temperature applied formed graphitic sheets with their normal (c axis) parallel to the surface of the silicon substrate. Some sheets closed to form multiwall nanotubes. The smallest diameter of the innermost tube was found to be 0.4 nm. The novel use of MSIBD (a pure method, catalyst free, low deposition temperature, easily applied to large surfaces without surface pretreatment capable of pattern-writing) may significantly advance the carbon nanostructure technology. © 2000 American Institute of Physics.