Published in

American Chemical Society, Environmental Science and Technology, 10(45), p. 4331-4338, 2011

DOI: 10.1021/es103953t

Links

Tools

Export citation

Search in Google Scholar

Role of Black Carbon in the Sorption of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans at the Diamond Alkali Superfund Site, Newark Bay, New Jersey

Journal article published in 2011 by Matthew K. Lambert, Carey Friedman, Pamela Luey, Rainer Lohmann ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The sorption of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to organic carbon (OC) and black carbon (BC) was measured in two sediment cores taken near the Diamond Alkali superfund site (DA) in the Passaic River and Newark Bay, New Jersey (U.S.A.). An OC partitioning model and a BC-inclusive, Freundlich distribution model were used to interpret measurements of freely dissolved PCDD/Fs using passive samplers in sediment incubations, together with measured sedimentary concentrations of OC, BC, and PCDD/Fs. Samples were also analyzed for polycyclic aromatic hydrocarbons (PAHs) as controls on the two distribution models. The OC partitioning model underpredicted the distribution of PAHs and PCDD/Fs by 10-100-fold. The Freundlich model predicted the distribution of PAHs at the DA to within a factor of 2-3 of observations. Black carbon-water partition coefficients (K(iBC)) for PCDD/Fs, derived from literature results of both field and laboratory studies differed up to 1000-fold from values derived from this study. Contrary to expectations, PCDDs displayed stronger sorption than either PCDFs or PAHs relative to their subcooled liquid aqueous solubilities. Even though the presence of BC in the sediments reduced the overall bioavailability of PCDD/Fs by >90%, the sediments at 2 m depth continue to display the highest pore water activities of PCDD/Fs.