Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Applied Mathematical Modelling, 9(32), p. 1711-1718, 2008

DOI: 10.1016/j.apm.2007.06.007

Links

Tools

Export citation

Search in Google Scholar

Numerical study of the adsorption of dyes from textile effluents

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The textile industry is one of the greatest generators of liquid effluents, due to the high quantities of water used in the dyeing process. Fixed bed adsorption columns using activated carbon have been widely used in industrial processes for the removal of contaminants from textile effluents. In this study we present the modelling of an adsorption process applied to textile dyes, using fixed bed columns. This model permits the prediction of the dye concentration at the adsorption column outlet, considering the influence of various operational parameters. The adsorption isotherms of the dye Basic Green 4, over granular activated carbon at 25 °C in an aqueous solution, were determined experimentally through a comprehensive series of tests. The Langmuir and Radke–Prausnitz models gave the best results for the adsorption isotherms. Tests were carried out in fixed bed columns to determine the breakthrough curves, with variations in feed rate, feed concentration, diameter of the column and mass transfer coefficient. The experimental conditions were simulated using a transient mathematical model. The data obtained numerically and experimentally were compared to validate the mathematical model proposed.