Published in

American Physiological Society, American Journal of Physiology: Cell Physiology, 1(273), p. C214-C222, 1997

DOI: 10.1152/ajpcell.1997.273.1.c214

Links

Tools

Export citation

Search in Google Scholar

Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells

Journal article published in 1997 by V. G. Manolopoulos, T. Voets ORCID, P. E. Declercq, G. Droogmans, B. Nilius
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We used a combined biochemical, pharmacological, and electrophysiological approach to study the effects of hyposmotic swelling on organic osmolyte efflux in endothelial cells (EC). In [3H]taurine-loaded monolayers of calf pulmonary artery EC (CPAEC), hyposmolality activated time- and dose-dependent effluxes of [3H]taurine. Swelling-activated [3H]taurine efflux (Jtau swell)in CPAEC was inhibited by the anion channel blockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), fenamates, and also quinine (in a pH-dependent manner), ATP, and the phospholipase A2 inhibitor 4-bromophenacyl bromide. In contrast, Jtau swell was partly or totally insensitive to bumetanide, forskolin, phorbol 12-myristate 13-acetate, and staurosporine. Swelling also activated myo-[3H]inositol efflux that was blocked by tamoxifen, NPPB, DIDS, and niflumic acid. Moreover, the cellular content of taurine and other amino acids was significantly reduced in osmotically activated CPAEC. Finally, in whole cell patch-clamp experiments, taurine, glycine, aspartate, and glutamate exhibited significant permeability for swelling-activated anion channels. In conclusion, hyposmotic swelling activates efflux of taurine and other organic osmolytes in EC. In addition, our results suggest that anion channels may provide a pathway for swelling-activated efflux of organic osmolytes in EC.