Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Steroid Biochemistry and Molecular Biology, (152), p. 1-7

DOI: 10.1016/j.jsbmb.2015.04.011

Links

Tools

Export citation

Search in Google Scholar

Environmental pollutants directly affect the liver X receptor alpha activity: Kinetic and thermodynamic characterization of binding

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Liver X receptor is a ligand-activated transcription factor, which is mainly involved in cholesterol homeostasis, bile acid and triglycerides metabolism, and, as recently discovered, in the glucose metabolism by direct regulation of liver glucokinase. Its modulation by exogenous factors, such as drugs, industrial by-products and chemicals is documented. Owing to the abundance of these synthetic molecules in the environment, and to the established target role of this receptor, a number of representative compounds of phthalate, organophosphate and fibrate classes were tested as ligands/modulators of human liver X receptor, using an integrated approach, combining an in silico molecular docking technique with an optical SPR biosensor binding study. The compounds of interest were predicted and proved to target the oxysterols-binding site of human LXRα with measurable binding kinetic constants and with affinities ranging between 4.3×10-7-4.3×10-8 M. Additionally, non-cytotoxic concentration of these chemicals induced relevant changes in the LXRα gene expression levels and other target genes (SREBP-1c and LGK) in human liver hepatocellular carcinoma cell line (HepG2), as demonstrated by q-RT-PCR