Cambridge University Press, Annals of Glaciology, 66(55), p. 15-24, 2014
Full text: Download
ISI Document Delivery No.: AH3FX Times Cited: 0 Cited Reference Count: 52 Cited References: Adhikari S, 2013, CRYOS DISCUSS, V7, P1707, DOI [10.5194/tcd-7-1707-2013, DOI 10.5194/TCD-7-1707-2013] Adhikari S, 2009, ANN GLACIOL, V50, P27, DOI 10.3189/172756409789624346 Arendt AA, 2002, SCIENCE, V297, P382, DOI 10.1126/science.1072497 Bartholomaus TC, 2008, NAT GEOSCI, V1, P33, DOI 10.1038/ngeo.2007.52 Berthier E, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL020706 BINDSCHADLER R, 1982, J GLACIOL, V28, P239 Casassa G, 2009, HYDROL PROCESS, V23, P31, DOI 10.1002/hyp.7194 Gabbi J, 2012, HYDROL EARTH SYST SC, V16, P4543, DOI 10.5194/hess-16-4543-2012 Giesen RH, 2013, CLIM DYNAM, V41, P3283, DOI 10.1007/s00382-013-1743-7 GLUCK S, 1967, CR ACAD SCI D NAT, V264, P2272 GREUELL W, 1992, J GLACIOL, V38, P233 Gudmundsson GH, 1999, J GLACIOL, V45, P219, DOI 10.3189/002214399793377086 Hubbard A, 1998, J GLACIOL, V44, P368 Huss M, 2008, HYDROL PROCESS, V22, P3888, DOI 10.1002/hyp.7055 Huss M, 2008, J GEOPHYS RES-EARTH, V113, DOI 10.1029/2007JF000803 Huss M, 2011, WATER RESOUR RES, V47, DOI 10.1029/2010WR010299 Huss M, 2012, J GEOPHYS RES-EARTH, V117, DOI 10.1029/2012JF002523 Huss M, 2010, HYDROL EARTH SYST SC, V14, P815, DOI 10.5194/hess-14-815-2010 Huss M, 2012, J GLACIOL, V58, P278, DOI 10.3189/2012JoG11J216 JOHANNESSON T, 1989, J GLACIOL, V35, P355 Jouvet G, 2008, J GLACIOL, V54, P801 Le Meur E, 2007, EARTH PLANET SC LETT, V261, P367, DOI 10.1016/j.epsl.2007.07.022 Le Meur E, 2003, J GLACIOL, V49, P527, DOI 10.3189/172756503781830421 Lemke P, 2007, CLIMATE CHANGE 2007, P339 Vieli GJMCL, 2004, J GEOPHYS RES-EARTH, V109, DOI 10.1029/2003JF000027 Lliboutry L, 1994, J GLACIOL, V13, P371 LLIBOUTRY L, 1981, J GLACIOL, V27, P207 Luthi MP, 2010, J GEOPHYS RES-EARTH, V115, DOI 10.1029/2010JF001695 Mair D, 2003, J GLACIOL, V49, P555, DOI 10.3189/172756503781830467 Mougin PL, 1933, ETUDES GLACIOLOGIQUE, VVII Nussbaumer SU, 2007, Z GLETSCHERKD GLAZIA, V40 Oerlemans J, 1998, CLIM DYNAM, V14, P267, DOI 10.1007/s003820050222 Oerlemans J, 2007, J GLACIOL, V53, P357, DOI 10.3189/002214307783258387 Paul F, 2007, GLOBAL PLANET CHANGE, V56, P111, DOI 10.1016/j.gloplacha.2006.07.007 Pimentel S, 2011, P ROY SOC A-MATH PHY, V467, P537, DOI 10.1098/rspa.2010.0211 Reynaud L, 1973, THESIS U SCI MED GRE Salzmann N, 2012, ENVIRON RES LETT, V7, DOI 10.1088/1748-9326/7/4/044001 Salzmann N, 2013, CRYOSPHERE, V7, P103, DOI 10.5194/tc-7-103-2013 Schafer M, 2007, J GLACIOL, V53, P713, DOI 10.3189/002214307784409234 SCHWITTER MP, 1993, J GLACIOL, V39, P582 Span N, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002828 Sugiyama S, 2007, ANN GLACIOL-SER, V46, P268, DOI 10.3189/172756407782871143 Susstrunk AE, 1951, HOUILLE BLANCHE A, P309, DOI [10.1051/1hb/1951010, DOI 10.1051/IHB/1951010] Thibert E, 2009, ANN GLACIOL, V50, P112, DOI 10.3189/172756409787769546 VALLON M, 1961, CR HEBD ACAD SCI, V252, P1815 Vallon M, 1967, THESIS U GRENOBLE Vallot J, 1905, ANN OBSERVATOIRE MET Vincent C, 2004, J GEOPHYS RES-ATMOS, V109, DOI 10.1029/2003JD003857 Vincent C, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD000832 Vincent C, 2009, ANN GLACIOL, V50, P73, DOI 10.3189/172756409787769500 Vincent C, 2000, J GLACIOL, V46, P499, DOI 10.3189/172756500781833052 Wallinga J, 1998, J GLACIOL, V44, P383 Vincent, C. Harter, M. Gilbert, A. Berthier, E. Six, D. Observatoire des Sciences de I'Univers de Grenoble (OSUG); Institut des Sciences de I'Univers (INSU); TOSCA program of the French Space Agency (CNES) We thank all those who have taken part in carrying out the extensive field measurements on Mer de Glace. This study has been funded by the Observatoire des Sciences de I'Univers de Grenoble (OSUG) and by the Institut des Sciences de I'Univers (INSU). All the measurements have been performed in the framework of the French 'GLACIO-CLIM (Les GLACiers comme Observatoire du CLIMat)' project. E.B. acknowledges support from the TOSCA program of the French Space Agency (CNES). We are grateful to H. Harder who revised the English. We also thank S. Adhikari, Scientific Editor, and two anonymous reviewers whose comments improved the quality of the manuscript. 0 INT GLACIOL SOC CAMBRIDGE ANN GLACIOL ; Simulations of glacier evolution are needed to assess future changes in the runoff regime of mountain catchments. A simplified parameterized model is applied here to simulate future thickness changes and glacier retreat of Mer de Glace, French Alps. A normalized thickness change function describing the spatial distribution of surface-elevation changes as a function of elevation has been determined. The model reveals that under present climatic conditions Mer de Glace will continue to shrink dramatically in the coming decades, retreating by 1200 m between now and 2040. The method has certain limitations related to the uncertainties of the normalized function based on thickness change data. An error of 10% in the normalized function leads to uncertainties of 46%, 30% and 18% in Mer de Glace front, surface area and glacier-wide mass-balance changes respectively in 2040. Because the difference of the normalized function largely exceeds 10% from one glacier to another, even within a given glacier size class and elevation range, it would be very risky to extrapolate the normalized function to unmeasured glaciers. Consequently, the method is applicable only on glaciers where past surface elevation changes are well constrained.