Published in

Cambridge University Press, Annals of Glaciology, 1(45), p. 169-177

DOI: 10.3189/172756407782282499

Links

Tools

Export citation

Search in Google Scholar

Habits of a glacier-covered volcano: Seismicity patterns and velocity structure of Katla volcano, Iceland

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe Katla volcano, overlain by the Mýrdalsjökull glacier, is one of the most active and hazardous volcanoes in Iceland. Earthquakes show anomalous magnitude-frequency behaviour and mainly occur in two distinct areas: within the oval caldera and around Goðabunga, a bulge on its western flank. The seismicity differs between the areas; earthquakes in Goðabunga are low frequency and shallow whereas those beneath the caldera occur at greater depths and are volcano-tectonic. The seismicity shows seasonal variations but the rates peak at different times in the two areas. A snow budget model, which gives an estimate of the glacial loading, shows good correlation with seismic activity on an annual scale. Data recorded by the permanent network South Iceland Lowland (SIL), as well as by a temporary network, are used to invert for a 3D seismic velocity model underneath Eyjafjallajökull, Goðabunga and the Katla caldera. The tomography resolves a 15 km wide, aseismic, high-velocity structure at a depth of more than 4 km between the Eyjafjallajökull volcano in the west and the Katla volcano in the east. Anomalously low velocities are observed beneath the Katla caldera, which is interpreted as being a significantly fractured area of anomalously high temperature.