Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 8(112), p. 2331-2336, 2015

DOI: 10.1073/pnas.1423435112

Links

Tools

Export citation

Search in Google Scholar

Probing equilibrium glass flow up to exapoise viscosities

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent here these limitations, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong. ; Comment: 4 figures and 1 supplementary figure