Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Electrochemistry Communications, 5(5), p. 378-382

DOI: 10.1016/s1388-2481(03)00071-7

Links

Tools

Export citation

Search in Google Scholar

Unusual Electrochemical Reduction of Copper(II) to Copper(I) in Polyoxotungstates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electrochemical behaviour of the copper-substituted Keggin-type and sandwich-type polyoxotungstate anions of the compounds α-[(C4H9)4N]4H[PW11CuIIO39] and α-B-[(C4H9)4N]7H3[CuII4(H2O)2(PW9O34)2] was studied by cyclic voltammetry in acetonitrile. In both cases two copper 1-electron reduction waves were detected in the cathodic scan. The first one was due to the reduction of one CuII to CuI in the polyoxoanion and the second one to the consecutive reduction of the preformed CuI to Cu0, with the consequent deposition/adsorption of the ejected metal atom at the glassy carbon electrode surface. In the anodic scan, Cu0 was re-oxidised with regeneration of the initial copper(II) complexes, via a CuI intermediate. The observed two-step reduction of copper(II) to copper(0) and the formation of intermediate species containing copper(I) is here reported for the first time for copper substituted polyoxotungstates. The co-ordination of the acetonitrile molecules to the copper ions must play a role in the formation of the copper(I) species, which are not detected in aqueous solution.