Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Computational and Theoretical Chemistry, (1053), p. 165-172, 2015

DOI: 10.1016/j.comptc.2014.09.032

Links

Tools

Export citation

Search in Google Scholar

The polarizability of organometallic bonds

Journal article published in 2015 by Piero Macchi ORCID, Anna Krawczuk
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The distributed atomic polarizabilities enable the investigation of the coordination of organic ligands to transition metals giving new insight of some organometallic complexes used in catalytic processes. This approach is useful to appreciate the enormous changes occurring upon complexation to a metal, which is mainly responsible for the augmented reactivity of these species. The method we have developed allows calculating the polarizability of an atom in a molecule upon a partitioning of the electron density, for example using the Quantum Theory of Atoms in Molecules. The polarizabilities result from numerical differentiation of the atomic dipole moments with respect to the electric field. From the polarizability tensors, other useful quantities derive, for example a mathematically precise definition of bond polarizability. In terms of chemical reactivity, the distributed polarizabilities are complementary to the traditional analysis of the electrostatic potential, which informs only on susceptibility toward hard, charge-controlled chemical reactions. On the contrary, atomic polarizabilities enable addressing the sites more keen on soft, orbital-controlled reactions.