Published in

Elsevier, Water Research, 17(44), p. 4980-4991, 2010

DOI: 10.1016/j.watres.2010.08.006

Links

Tools

Export citation

Search in Google Scholar

Biological treatment of propanil and 3,4-dichloroaniline: Kinetic and microbiological characterisation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Propanil (3,4-dichloropropionanilide) is a widely used herbicide, applied worldwide in rice paddies. Propanil is primarily transformed in nature to 3,4-dichloroaniline (DCA), which is more slowly biodegradable. Both compounds have adverse health and ecotoxicity effects. This work investigated the microbial ecology and kinetics of propanil-degrading enrichments obtained from soil in a sequencing batch reactor (SBR) operated with different feeding strategies, aiming at the enhanced biological removal of propanil and DCA from contaminated waters. During SBR operation with a dump feeding strategy, a high propanil concentration led to DCA accumulation, which was only fully degraded after 5 days, likely due to DCA inhibition. For this reason, the operational mode was changed to fed-batch operation with lower initial propanil concentrations, which resulted in faster propanil and DCA biodegradation. Thus a fed-batch operation seems more appropriate for the acclimatisation of an effective propanil- and DCA-degrading population. The changes in performance were accompanied by a shift in the microbial population structure, as determined by DGGE of the 16S rRNA gene, particularly after a feed of DCA as the sole carbon source. Isolates obtained from the acclimatised population included members of the genera Enterococcus and Rhodococcus, as well as Brevundimonas, which displayed >90% propanil biodegradation efficiency.