Published in

Public Library of Science, PLoS ONE, 11(10), p. e0143733, 2015

DOI: 10.1371/journal.pone.0143733

Links

Tools

Export citation

Search in Google Scholar

Predator Presence and Vegetation Density Affect Capture Rates and Detectability of Litoria aurea Tadpoles: Wide-Ranging Implications for a Common Survey Technique

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Trapping is a common sampling technique used to estimate fundamental population metrics of animal species such as abundance, survival and distribution. However, capture success for any trapping method can be heavily influenced by individuals' behavioural plasticity, which in turn affects the accuracy of any population estimates derived from the data. Funnel trapping is one of the most common methods for sampling aquatic vertebrates, although, apart from fish studies, almost nothing is known about the effects of behavioural plasticity on trapping success. We used a full factorial experiment to investigate the effects that two common environmental parameters (predator presence and vegetation density) have on the trapping success of tadpoles. We estimated that the odds of tadpoles being captured in traps was 4.3 times higher when predators were absent compared to present and 2.1 times higher when vegetation density was high compared to low, using odds ratios based on fitted model means. The odds of tadpoles being detected in traps were also 2.9 times higher in predator-free environments. These results indicate that common environmental factors can trigger behavioural plasticity in tadpoles that biases trapping success. We issue a warning to researchers and surveyors that trapping biases may be commonplace when conducting surveys such as these, and urge caution in interpreting data without consideration of important environmental factors present in the study system. Left unconsidered, trapping biases in capture success have the potential to lead to incorrect interpretations of data sets, and misdirection of limited resources for managing species.