Dissemin is shutting down on January 1st, 2025

Published in

Springer, Extremophiles, 6(11), p. 833-840, 2007

DOI: 10.1007/s00792-007-0106-x

Links

Tools

Export citation

Search in Google Scholar

Mannosylglycerate is essential for osmotic adjustment in Thermus thermophilus strains HB27 and RQ-1

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We disrupted the mpgS encoding mannosyl-3-phosphoglycerate synthase (MpgS) of Thermus thermophilus strains HB27 and RQ-1, by homologous recombination, to assess the role of the compatible solute mannosylglycerate (MG) in osmoadaptation of the mutants, to examine their ability to grow in NaCl-containing medium and to identify the intracellular organic solutes. Strain HB27 accumulated only MG when grown in defined medium containing 2% NaCl; mutant HB27M9 did not grow in the same medium containing more than 1% NaCl. When trehalose or MG was added, the mutant was able to grow up to 2% of NaCl and accumulated trehalose or MG, respectively, plus amino acids. T. thermophilus RQ-1 grew in medium containing up to 5% NaCl, accumulated trehalose and lower amounts of MG. Mutant RQ-1M1 lost the ability to grow in medium containing more than 3% NaCl and accumulated trehalose and moderate levels of amino acids. Exogenous MG did not improve the ability of the organism to grow above 3% NaCl, but caused a decrease in the levels of amino acids. Our results show that MG serves as a compatible solute primarily during osmoadaptation at low levels of NaCl while trehalose is primarily involved in osmoadaptation during growth at higher NaCl levels.