Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature, 6781(404), p. 1014-1018, 2000

DOI: 10.1038/35010020

Links

Tools

Export citation

Search in Google Scholar

Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The expression of the Escherichia coli DNA polymerases pol V (UmuD'2C complex) and pol IV (DinB) increases in response to DNA damage. The induction of pol V is accompanied by a substantial increase in mutations targeted at DNA template lesions in a process called SOS-induced error-prone repair. Here we show that the common DNA template lesions, TT (64) photoproducts, TT cis- syn photodimers and abasic sites, are efficiently bypassed within 30 seconds by pol V in the presence of activated RecA protein (RecA*), single-stranded binding protein (SSB) and pol III's processivity β,γ-complex. There is no detectable bypass by either pol IV or pol III on this time scale. A mutagenic 'signature' for pol V is its incorporation of guanine opposite the 3'-thymine of a TT (6-4) photoproduct, in agreement with mutational spectra. In contrast, pol III and pol IV incorporate adenine almost exclusively. When copying undamaged DNA, pol V exhibits low fidelity with error rates of around 10-3 to 10-4, with pol IV being 5- to 10-fold more accurate. The effects of RecA protein on pol V, and β,γ-complex on pol IV, cause a 15,000- and 3,000-fold increase in DNA synthesis efficiency, respectively. However, both polymerases exhibit low processivity, adding 6 to 8 nucleotides before dissociating. Lesion bypass by pol V does not require β,γ-complex in the presence of non-hydrolysable ATPγS, indicating that an intact RecA filament may be required for translesion synthesis.