Published in

American Chemical Society, Inorganic Chemistry, 1(47), p. 162-175, 2007

DOI: 10.1021/ic701669x

Links

Tools

Export citation

Search in Google Scholar

Self-Assembled Copper(II) Coordination Polymers Derived from Aminopolyalcohols and Benzenepolycarboxylates: Structural and Magnetic Properties

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The new copper(II) or copper(II)/sodium(I) 1D coordination polymers [Cu2(Hmdea)2(mu-H2O)(mu2-tpa)]n.2nH2O (1), [Cu2(H2tipa)2(mu2-ipa)]n.4nH2O (2), [Cu2(H2tea)2Na(H2O)2(mu2-tma)]n.6nH2O (3), [Cu2(H2tea)2(mu2-ipa)]n.nH2O (4a), and [Cu2(H2tea)2{mu3-Na(H2O)3}(mu3-ipa)]n(NO3)n.0.5nH2O (4b) have been prepared in aqueous medium by self-assembly from copper(II) nitrate, aminopolyalcohols [methyldiethanolamine (H2mdea), triisopropanolamine (H3tipa), and triethanolamine (H3tea)] as main chelating ligands and benzenepolycarboxylic acids [terephthalic (H2tpa), isophthalic (H2ipa), and trimesic (H3tma) acid] as spacers. They have been characterized by IR spectroscopy, elemental and single-crystal X-ray diffraction analyses, the latter indicating the formation of unusual multinuclear metal cores interconnected by various benzenepolycarboxylate spacers, leading to distinct wavelike, zigzag, or linear 1D polymeric metal-organic chains. These are further extended to 2D or 3D hydrogen-bonded supramolecular networks via extensive interactions with the intercalated crystallization water molecules. The latter are associated, also with aqua ligands, by hydrogen bonds resulting in acyclic (H2O)3 clusters in 1, (H2O)8 clusters in 2, infinite 1D water chains in 3, and disordered water-nitrate associates in 4b, all playing a key role in the structure stabilization and its extension to further dimensions. Variable-temperature magnetic susceptibility measurements have shown that 1-4 exhibit a moderately strong ferromagnetic coupling through the alkoxo bridge. The small Cu-O-Cu bridging angle and the large out-of-plane displacement of the carbon atom of the alkoxo group accounts for this behavior. The magnetic data have been analyzed by means of a dinuclear and a 1D chain model, and the magnetic parameters have been determined. The magnetic exchange coupling in 3, to our knowledge, is the highest found in alkoxo-bridged copper(II) complexes.