Published in

Oxford University Press, Journal of Heredity, 5(95), p. 375-381, 2004

DOI: 10.1093/jhered/esh063

Links

Tools

Export citation

Search in Google Scholar

Centromere Dynamics and Chromosome Evolution in Marsupials

Journal article published in 2004 by R. J. O'Neill, M. D. B. Eldridge, C. J. Metcalfe ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The eukaryotic centromere poses an interesting evolutionary paradox: it is a chromatin entity indispensable to precise chromosome segregation in all eukaryotes, yet the DNA at the heart of the centromere is remarkably variable. Its important role of spindle attachment to the kinetochore during meiosis and mitosis notwithstanding, recent studies implicate the centromere as an active player in chromosome evolution and the divergence of species. This is exemplified by centromeric involvement in translocations, fusions, inversions, and centric shifts. Often species are defined karyotypically simply by the position of the centromere on certain chromosomes. Little is known about how the centromere, either as a functioning unit of chromatin or as a specific block of repetitive DNA sequences, acts in the creation of these types of chromosome rearrangements in an evolutionary context. Macropodine marsupials (kangaroos and wallabies) offer unique insights into current theories expositing centromere emergence during karyotypic diversification and speciation.