Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 2(53), p. 227-235, 2004

DOI: 10.1021/jf049144d

Links

Tools

Export citation

Search in Google Scholar

Metabolism of Antioxidant and Chemopreventive Ellagitannins from Strawberries, Raspberries, Walnuts, and Oak-Aged Wine in Humans: Identification of Biomarkers and Individual Variability

Journal article published in 2004 by Begoña Cerdá, Francisco A. Tomás Barberán ORCID, Juan Carlos Espín
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ellagitannins (ETs) are dietary polyphenols, containing ellagic acid (EA) subunits, with antioxidant and cancer chemopreventive activities that might contribute to health benefits in humans. However, little is known about their metabolic fate. We investigate here the metabolism of different dietary ETs and EA derivatives in humans. Forty healthy volunteers were distributed in four groups. Each group consumed, in a single dose, a different ET-containing foodstuff, i.e., strawberries (250 g), red raspberries (225 g), walnuts (35 g), and oak-aged red wine (300 mL). After the intake, five urine fractions (F) were collected at 8 (F1), 16 (F2), 32 (F3), 40 (F4), and 56 (F5) h. Neither ETs nor EA were detected in urine after LC-MS/MS analysis. However, the microbial metabolite 3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one (urolithin B) conjugated with glucuronic acid was detected along the fractions F3-F5 in all of the subjects, independently of the consumed foodstuff. The mean percentage of metabolite excretion ranged from 2.8 (strawberries) to 16.6% (walnuts) regarding the ingested ETs. Considerable interindividual differences were noted, identifying "high and low metabolite excreters" in each group, which supported the involvement of the colonic microflora in ET metabolism. These results indicate that urolithin B (a previously described antiangiogenic and hyaluronidase inhibitor compound) is a biomarker of human exposure to dietary ETs and may be useful in intervention studies with ET-containing products. The antioxidant and anticarcinogenic effects of dietary ETs and EA should be considered in the gastrointestinal tract whereas the study of potential systemic activities should be focused on the bioavailable urolithin B derivatives.