Published in

Wiley, Cytometry Part A, 4(77A), p. 310-320, 2010

DOI: 10.1002/cyto.a.20873

Links

Tools

Export citation

Search in Google Scholar

N-Acetylcysteine Impairs Survival of Luteal Cells Through Mitochondrial Dysfunction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

N-acetylcysteine (NAC) is known as an antioxidant and used for mucus viscosity reduction. However, this drug prevents or induces cell death depending on the cell type. The response of steroidogenic luteal cells to NAC is unknown. Our data shows that NAC can behave as an antioxidant or prooxidant in dependency on the concentration and mitochondrial energization. NAC elevated the flowcytometric-measured portion of hypodiploid (dying) cells. This rise was completely abolished by aurintricarboxylic acid, an inhibitor of topoisomerase II. NAC increased the secretion of nitric oxide and cellular nitrotyrosine. An image analysis indicated that cells pretreated with NAC and loaded with DHR showed a fluorescent structure probably elicited by the oxidative product of DHR, rhodamine 123 that sequesters mitochondrially. Pretreating luteal cells with NAC or adding NAC directly to mitochondrial fractions followed by assessing the mitochondrial transmembrane potential difference (Deltapsi) by the JC-1 technique demonstrated a marked decrease in Deltapsi. A protonophore restored Deltapsi and rotenone (an inhibitor of respiratory chain complex I) inhibited mitochondrial recovering. Thus, in steroidogenic luteal cells from healthy mature corpus luteum, NAC impairs cellular survival by interfering with mitochondrial metabolism. The protonophore-induced recovering of NAC-provoked decrease in Deltapsi indicates that an ATP synthase-favored route of H(+) re-entry to the matrix is essentially switched off by NAC while other respiratory chain complexes remain intact. These data may be important for therapeutic timing of treatments with NAC. (c) 2010 International Society for Advancement of Cytometry.