Published in

2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.

DOI: 10.1109/cvpr.2003.1211431

Links

Tools

Export citation

Search in Google Scholar

Variational inference for visual tracking

Proceedings article published in 2003 by J. Vermaak, N. D. Lawrence ORCID, P. Perez
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The likelihood models used in probabilistic visual tracking applications are often complex non-linear and/or non-Gaussian functions, leading to analytically intractable inference. Solutions then require numerical approximation techniques, of which the particle filter is a popular choice. Particle filters, however, degrade in performance as the dimensionality of the state space increases and the support of the likelihood decreases. As an alternative to particle filters this paper introduces a variational approximation to the tracking recursion. The variational inference is intractable in itself, and is combined with an efficient importance sampling procedure to obtain the required estimates. The algorithm is shown to compare favorably with particle filtering techniques on a synthetic example and two real tracking problems. The first involves the tracking of a designated object in a video sequence based on its color properties, whereas the second involves contour extraction in a single image.