Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Annals of Oncology, (17), p. vii115-vii123, 2006

DOI: 10.1093/annonc/mdl963

Links

Tools

Export citation

Search in Google Scholar

Apoptosis: A relevant tool for anticancer therapy

Journal article published in 2006 by A. Russo, M. Terrasi, V. Agnese ORCID, D. Santini, V. Bazan
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Apoptosis is a form of cell death that permits the removal of damaged, senescent or unwanted cells in multicellular organisms, without damage to the cellular microenvironment. Defective apoptosis represents a major causative factor in the development and progression of cancer. The majority of chemotherapeutic agents, as well as radiation, utilize the apoptotic pathway to induce cancer cell death. Resistance to standard chemotherapeutic strategies also seems to be due to alterations in the apoptotic pathway of cancer cells. Recent knowledge on apoptosis has provided the basis for novel targeted therapies that exploit apoptosis to treat cancer. These new target include those acting in the extrinsic/intrinsic pathway, proteins that control the apoptosis machinery such as the p53 and proteosome pathway. Most of these forms of therapy are still in preclinical development because of their low specifity and susceptibility to drug resistance, but several of them have shown promising results. In particular, this review specifically aims at providing an update of certain molecular players that are already in use in order to target apoptosis (such as bortezomib) or which are still being clinically evaluated (such ONYX-015, survivin and exisulind/aptosyn) or which, following preclinical studies, might have the necessary requirements for becoming part of the anticancer drug programs (such as TRAIL/Apo2L, apoptin/VP3).