Published in

American Chemical Society, Organometallics, 3(33), p. 665-676, 2014

DOI: 10.1021/om400811z

Links

Tools

Export citation

Search in Google Scholar

Supramolecular Ruthenium–Alkynyl Multicomponent Architectures: Engineering, Photophysical Properties, and Responsiveness to Nitroaromatics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of H-bonded supramolecular architectures were built from monofunctional M-C = C-R and bifunctional R-C = C-M-C = C-R trans-alkynylbis(1,2-bis(diphenylphosphino)ethane)ruthenium(II) complexes and pi-conjugated modules containing 2,5-dialkoxy-p-phenylene. incorporation on each partner of a cyanuric end and of the complementary Hamilton receptor provided the necessary means to keep the constituents together via strong hydrogen bonding. Characterization of all architectures has been performed on the basis of NMR and photophysical methods. In particular, the formation of a Hamilton receptor/cyanuric acid complex has been exemplified by an X-ray single-crystal structure determination. Both self-assembly and accurate modification of the complementary blocks were ensured in such a way that the resulting materials maintain the responsiveness of the electron-rich 2,5-dialkoxy-p-phenylene spacers toward nitroaromatics.