Published in

American Chemical Society, The Journal of Physical Chemistry A, 12(111), p. 2253-2256, 2007

DOI: 10.1021/jp068960g

Links

Tools

Export citation

Search in Google Scholar

Structure and Energetics of the Hydronium Hydration Shells

Journal article published in 2007 by Omer Markovitch ORCID, Noam Agmon
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proton solvation and proton mobility are both subjects of great interest in chemistry and biology. Here we have studied the hydration shells of H3O+ at temperatures ranging from 260 to 340 K using the multistate empirical valence-bond methodology (MS-EVB2). We have calculated the radial distribution functions for the protonium and its solvation shells. Furthermore, we have determined the Gibbs energy and the enthalpy for hydrogen bonds donated or accepted by the first two solvation shells, in comparison to bulk water. We find systematic bond-energy differences that appear to agree with a recent IR study on proton hydration. Implications of our results to various proton mobility mechanisms are discussed.