Published in

American Physical Society, Physical review B, 4(85), 2012

DOI: 10.1103/physrevb.85.041401

Links

Tools

Export citation

Search in Google Scholar

Electronic transport in graphene-based structures: an effective cross section approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We show that transport in low-dimensional carbon structures with finite concentrations of scatterers can be modeled by utilising scaling theory and effective cross sections. Our reults are based on large scale numerical simulations of carbon nanotubes and graphene nanoribbons, using a tightbinding model with parameters obtained from first principles electronic structure calculations. As shown by a comprehensive statistical analysis, the scattering cross sections can be used to estimate the conductance of a quasi-1D system both in the Ohmic and localized regimes. They can be computed with good accuracy from the transmission functions of single defects, greatly reducing the computational cost and paving the way towards using first principles methods to evaluate the conductance of mesoscopic systems, consisting of millions of atoms. ; Comment: Submitted to Physical Review Letters