Published in

Elsevier, Virus Research, 1(135), p. 53-63, 2008

DOI: 10.1016/j.virusres.2008.02.007

Links

Tools

Export citation

Search in Google Scholar

Lytic infection with vaccinia virus activates caspases in a Bcl-2-inhibitable manner

Journal article published in 2008 by Marie Kalbacova ORCID, Martina Spisakova, Jana Liskova, Zora Melkova
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vaccinia virus (VV) is considered to cause lytic infection of most cells, with lysis being regarded equivalent to necrosis. Activation of caspases has not been associated with necrosis. However, we observed the activation and activity of caspases in epithelial cells HeLa G and BSC-40 lytically infected with VV. Using three different flow-cytometric approaches, we characterized the distinct stages of caspase cascade in VV-infected cells: a cleaved, activated form of caspases detected using a fluorescent pan-caspase inhibitor; caspase activity assayed by cleavage of a non-fluorescent substrate into a fluorescent product; caspase-specific cleavage of death substrates characterized by a fluorescent antibody detecting a neo-epitope in cytokeratin-18. All of these approaches yielded an increased fluorescent signal in VV-infected cells compared to mock-infected controls. Additionally, the signal was decreased by the expression of Bcl-2. The cleavage of cytokeratin-18 was confirmed by western blotting, but another key protein involved in apoptosis, PARP, was not cleaved in VV-infected lytic cells. The necrotic phenotype of the cells was confirmed by increased cell membrane permeability and/or decreased mitochondrial membrane potential. In conclusion, our data suggest that VV infection of the epithelial cells HeLa G and BSC-40 initiates the apoptotic program, however, apoptosis is not completed and switches into necrosis.