Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Molecular Catalysis A: Chemical, 1-2(267), p. 129-136

DOI: 10.1016/j.molcata.2006.11.027

Links

Tools

Export citation

Search in Google Scholar

Reactivity of zirconium and titanium alkoxides bidentade complexes on ethylene polymerization

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The catalyst activity of zirconium and titanium complexes bearing bidentade ligands was evaluated in ethylene polymerization at different experimental conditions with methylaluminoxane (MAO) as the cocatalyst. The best activity was achieved for dichlorobis(3-hydroxy-2-methyl-4-pyrone)zirconium(IV) at Al/Zr=2500 at 60°C. Conversely, dichlorobis(3-hydroxy-2-methyl-4-pyrone)titanium(IV) exhibited a higher catalyst activity at lower Al/Ti ratio and temperature. According to 1H NMR analysis, two stereoisomers are present for the zirconium complex. Electrochemical analyses evidenced a higher stability in the reduction of Zr(IV) in comparison to the analogous Ti(IV) complex. The cyclic voltammogram of the Ti complex in the presence of MAO and ethylene shows a potential shift to lower values, suggesting the formation of the Ti cationic species, which might be stabilized by ClMAO−. For the Zr complex in the presence of MAO, stabilization of the active species takes place only in the presence of an ethylene atmosphere.