Published in

American Chemical Society, Crystal Growth and Design, 1(14), p. 15-22, 2013

DOI: 10.1021/cg401065h

Links

Tools

Export citation

Search in Google Scholar

Crystal Growth of Lysozyme Controlled by Laser Trapping

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We demonstrate the growth of a tetragonal crystal of hen egg-white lysozyme (HEWL) in D2O buffer solution controlled by laser trapping with a focused continuous-wave (CW) near-infrared (NIR) laser beam. The focal spot was located at 10 μm away from the edge of the target crystal that was generated spontaneously, and the crystal growth was observed although the focal spot size was much smaller than the distance. The growth rate of (101) and {110} faces of the tetragonal crystal was examined with various laser powers and polarizations. The rate observed under the irradiation was much different from those in spontaneous growth, namely, the growth rate of the {110} face showed a large decrease or increase depending on the irradiation time. The dynamics and mechanism of this unusual crystal growth behavior is discussed from the viewpoint of a large stable domain formation of the HEWL liquidlike clusters through liquid nucleation and growth and by considering the anisotropy of the cluster domain.