Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biomaterials, 9(33), p. 2673-2680, 2012

DOI: 10.1016/j.biomaterials.2011.12.036

Links

Tools

Export citation

Search in Google Scholar

Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The human heart cannot regenerate after an injury. Lost cardiomyocytes are replaced by scar tissue resulting in reduced cardiac function causing high morbidity and mortality. One possible solution to this problem is cardiac tissue engineering. Here, we have investigated the suitability of non-mulberry silk protein fibroin from Indian tropical tasar Antheraea mylitta as a scaffold for engineering a cardiac patch in vitro. We have tested cell adhesion, cellular metabolic activity, response to extracellular stimuli, cell-to-cell communication and contractility of 3-days postnatal rat cardiomyocytes on silk fibroin. Our data demonstrate that A. mylitta silk fibroin exhibits similar properties as fibronectin, a component of the natural matrix for cardiomyocytes. Comparison to mulberry Bombyx mori silk protein fibroin shows that A. mylitta silk fibroin is superior probably due to its RGD domains. 3D scaffolds can efficiently be loaded with cardiomyocytes resulting in contractile patches. In conclusion, our findings demonstrate that A. mylitta silk fibroin 3D scaffolds are suitable for the engineering of cardiac patches.