Published in

Public Library of Science, PLoS ONE, 4(7), p. e36290, 2012

DOI: 10.1371/journal.pone.0036290

Links

Tools

Export citation

Search in Google Scholar

Individual to Community-Level Faunal Responses to Environmental Change from a Marine Fossil Record of Early Miocene Global Warming

Journal article published in 2012 by Christina L. Belanger ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Modern climate change has a strong potential to shift earth systems and biological communities into novel states that have no present-day analog, leaving ecologists with no observational basis to predict the likely biotic effects. Fossil records contain long time-series of past environmental changes outside the range of modern observation, which are vital for predicting future ecological responses, and are capable of (a) providing detailed information on rates of ecological change, (b) illuminating the environmental drivers of those changes, and (c) recording the effects of environmental change on individual physiological rates. Outcrops of Early Miocene Newport Member of the Astoria Formation (Oregon) provide one such time series. This record of benthic foraminiferal and molluscan community change from continental shelf depths spans a past interval environmental change (≈ 20.3-16.7 mya) during which the region warmed 2.1-4.5°C, surface productivity and benthic organic carbon flux increased, and benthic oxygenation decreased, perhaps driven by intensified upwelling as on the modern Oregon coast. The Newport Member record shows that (a) ecological responses to natural environmental change can be abrupt, (b) productivity can be the primary driver of faunal change during global warming, (c) molluscs had a threshold response to productivity change while foraminifera changed gradually, and (d) changes in bivalve body size and growth rates parallel changes in taxonomic composition at the community level, indicating that, either directly or indirectly through some other biological parameter, the physiological tolerances of species do influence community change. Ecological studies in modern and fossil records that consider multiple ecological levels, environmental parameters, and taxonomic groups can provide critical information for predicting future ecological change and evaluating species vulnerability.