International Union of Crystallography, Journal of Applied Crystallography, 3(47), p. 999-1007, 2014
DOI: 10.1107/s1600576714007584
Full text: Download
The effect of Sn for Ti substitution on the crystal structure of a perovskite, barium titanate stannate (BTS), BaTi1−xSnxO3forx= 0, 0.025, 0.05, 0.07, 0.10, 0.12, 0.15 and 0.20, was investigated. The powders were prepared by the conventional solid-state reaction technique. The structural investigations of the BTS powders were done at room temperature by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selected-area electron diffraction (SAED) and Raman spectroscopy analyses. Rietveld refinement of XRD data indicates that gradual replacement of titanium by tin in BaTiO3provokes a phase transition from tetragonal for 0 ≤x≤ 0.07 to cubic forx= 0.12, 0.15 and 0.20. The coexistence of tetragonal (P4mm) and cubic (Pm\overline 3m) crystal phases was established in powder with nominal composition BaTi0.9Sn0.1O3. The crystal phases determined by Rietveld refinement were confirmed by HRTEM and SAED analyses. The crystal structures of the BTS powders at short-range scale were studied by Raman spectroscopy, which shows tetragonal (P4mm) and a small fraction of orthorhombic (Pmm2) crystal phases for all the examined BTS powders, implying a lower local ordering when compared to the average symmetry.