Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Light: Science and Applications, 2(4), p. e255-e255, 2015

DOI: 10.1038/lsa.2015.28

Links

Tools

Export citation

Search in Google Scholar

Femtojoule electro-optic modulation using a silicon-organic hybrid device

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects, and silicon photonics is considered the leading technology for realizing such devices. However, the performance of all-silicon devices is limited by intrinsic material properties. In particular, the absence of linear electro-optic effects in silicon renders the integration of energy-efficient photonic-electronic interfaces challenging. Silicon-organic hybrid (SOH) integration can overcome these limitations by combining nanophotonic silicon waveguides with organic cladding materials, thereby offering the prospect of designing optical properties by molecular engineering. In this paper, we demonstrate an SOH Mach-Zehnder modulator with unprecedented efficiency: the 1-mm-long device consumes only 0.7 fJ bit−1 to generate a 12.5 Gbit s−1 data stream with a bit-error ratio below the threshold for hard-decision forward-error correction. This power consumption represents the lowest value demonstrated for a non-resonant Mach-Zehnder modulator in any material system. It is enabled by a novel class of organic electro-optic materials that are designed for high chromophore density and enhanced molecular orientation. The device features an electro-optic coefficient of r33≈180 pm V−1 and can be operated at data rates of up to 40 Gbit s−1.