Dissemin is shutting down on January 1st, 2025

Published in

J. Chil. Chem. Soc., 3(56), p. 808-811

DOI: 10.4067/s0717-97072011000300019

Links

Tools

Export citation

Search in Google Scholar

Prenyllipids and pigments content in selected antarctic lichens and mosses

Journal article published in 2010 by Kazimierz Strzalka, Renata Szymanska ORCID, Mario Suwalsky
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The content and relative composition of tocopherols, plastochromanol, plastoquinone and pigments in fifteen Antarctic species (five mosses and ten lichens) were analyzed by HPLC. Total tocopherols in mosses ranged from 90 mg/g (Warnstrofia sarmentosa) to 220 mg/g (Syntrichia magellanica), while in lichens it ranged from 0.89 mg/g in Caloplaca sp. to 45 mg/g in Placopsis contortuplicata. With the exception of Ochrolechia frigida, in all other mosses and lichens species, a-tocopherol accounted for more than 90% of total tocopherols. Plastochromanol was detected in four mosses and two lichen species; the highest level was found in Polytrichastrum alpinum (19.1 mg/g). The highest content of plastoquinone-9 (PQ-9) in mosses was found in Bryum pseudotriquetrum (42.6 mg/g), whereas in lichens it was 24.5 mg/g in Stereocaulon alpinum, and 23.17 mg/g in Umbilicaria antarctica. Pigment composition in mosses was typical for higher plants. Some lichen species lacked chlorophyll b, violaxanthin and β-carotene. Based on these results it is suggested that tocochromanols and carotenoid pigments are involved in the protection of mosses and lichens against the oxidative stress caused by the extreme Antarctic conditions.