Published in

Volume 8: Ian Jordaan Honoring Symposium on Ice Engineering

DOI: 10.1115/omae2015-41375

Links

Tools

Export citation

Search in Google Scholar

A Simulation-Based Decision Support Tool for Arctic Transit Transport

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Russian Federation attempts to foster the Northern Sea Route (NSR) as a transport alternative to the current Suez Canal Route (SCR). Therefore, this paper seeks to identify under which conditions the use of the NSR is economically feasible. To evaluate this in a realistic way it is essential to take the significant uncertainty of input variables like ice data predictions into account. For that reason a simulation-based decision-support (SBDS)-tool based on a discrete-event simulation model is developed. The SBDS-tool requires as input vessel dimensions, available power and information about the route(s) including waypoints and ice data. It calculates then the general performance of the vessel in both open water and ice. Next it generates day-specific ice conditions according to a probability distribution between lower and upper limit obtained from satellite measurements. Based on this and the previously calculated vessels’ performance the SBDS-tool calculates day-specific transit times and fuel consumptions for examined time period. This is then used as input for a discrete-event simulation to assess the number of roundtrips, transported cargo and fuel consumption for joint use of different routes, dependent on the predefined operational days along the routes. The obtained results are then used to calculate the cost per transported cargo unit between two ports and to assess the sensitivity in order to determine if an economically advantageous and robust transport system can be achieved. In addition, possible economy of scale effects using larger vessels can be evaluated. In order to show the applicability of the developed model a comparative case study for three container vessels operating between Rotterdam (NL) and Yokohama (JP) is carried out.