Published in

American Chemical Society, Analytical Chemistry, 6(75), p. 1524-1535, 2003

DOI: 10.1021/ac026280d

Links

Tools

Export citation

Search in Google Scholar

Peptide Rearrangement during Quadrupole Ion Trap Fragmentation: Added Complexity to MS/MS Spectra

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The emergence of proteomics has placed great interest in the understanding of the mechanisms of MS/MS fragmentation of peptides under low-energy collision-induced dissociation. In this work, we describe the presence of anomalous fragments, which correspond to neutral loss elimination of internal amino acids from ions of the b series in quadrupole ion trap MS/MS spectra from naturally occurring peptides. Internal amino acid elimination occurred preferentially with aliphatic amino acids. The phenomenon was more apparent when doubly charged precursors were fragmented and was inhibited when peptides were N-acetylated at the N-terminus. Fragmentation of isomeric peptides where some internal amino acids were relocated in N-terminal position produced MSn spectra indistinguishable from those of the original peptides, indicating that some b ions underwent a structural rearrangement process. Formation of anomalous fragments required a minimum activation time. Our data are consistent with a nucleophile attack of the N-terminal nitrogen over the electrophilic carbonyl carbon at one peptide bond, forming a cyclic b ion intermediate that, by reopening at preferential sites, exposes internal amino acids to the C-terminal side.