Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Carbohydrate Polymers, 2(77), p. 267-275

DOI: 10.1016/j.carbpol.2008.12.032

Links

Tools

Export citation

Search in Google Scholar

Synthesis of poly-(ε)-caprolactone grafted starch co-polymers by ring-opening polymerisation using silylated starch precursors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Poly-(ε)-caprolactone grafted corn starch co-polymers were synthesized using a hydrophobised silylated starch precursor. The silylation reaction was performed using hexamethyl disilazane (HMDS) as the reagent in DMSO at 70 °C. Silylated starch with a degree of substitution (DS) between 0.45 and 0.7 was obtained. ε-Caprolactone is grafted to silylated starch by a ring-opening polymerisation catalysed by Al(OiPr)3 in THF at 50 °C. The grafting efficiency varies between 28% and 58%, the remainder being homopolymers of ε-caprolactone. The DS of the polycaprolactone graft is between 0.21 and 0.72. The poly-(ε)-caprolactone side chains consist of 40–55 monomer units and is a function of the reagent intakes. Experiments with native starch under similar conditions do not result in the desired poly-(ε)-caprolactone grafted corn starch co-polymers and unreacted starch was recovered after work-up. Removal of the silyl groups of the poly-(ε)-caprolactone grafted starch co-polymers is possible using a mild acid treatment with diluted hydrochloric acid in THF at room temperature.