Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, The Journal of Physical Chemistry A, 11(116), p. 2662-2668, 2011

DOI: 10.1021/jp207257j

Links

Tools

Export citation

Search in Google Scholar

Wavelength Dependence of the Suppressed Ionization of Molecules in Strong Laser Fields

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We study ionization of molecules by an intense laser field over a broad wavelength regime, ranging from 0.8 to 1.5 μm experimentally and from 0.6 to 10 μm theoretically. A reaction microscope is combined with an optical parametric amplifier to achieve ionization yields in the near-infrared wavelength regime. Calculations are done using the strong-field S-matrix theory and agreement is found between experiment and theory, showing that ionization of many molecules is suppressed compared to the ionization of atoms with identical ionization potentials at near-infrared wavelengths at around 0.8 μm, but not at longest wavelengths (10 μm). This is due to interference effects in the electron emission that are effective at low photoelectron energies but tend to average out at higher energies. We observe the transition between suppression and nonsuppression of molecular ionization in the near-infrared wavelength regime (1-5 μm).