Published in

American Chemical Society, Industrial & Engineering Chemistry Research, 9(53), p. 3737-3748, 2014

DOI: 10.1021/ie4041093

Links

Tools

Export citation

Search in Google Scholar

Vapor–Liquid Equilibria of Water + Alkylimidazolium-Based Ionic Liquids: Measurements and Perturbed-Chain Statistical Associating Fluid Theory Modeling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The industrial application of ionic liquids (ILs) requires the knowledge of their physical properties and phase behavior. This work addresses the experimental determination of the vapor-liquid equilibria (VLE) of binary systems composed of water + imidazolium-based ILs. The ILs under consideration are 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium thiocyanate, 1-butyl-3-methylimidazolium tosylate, 1-butyl-3-methylimidazolium trifluoroacetate, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium methanesulfonate and 1-butyl-3-methylimidazolium acetate, which allows the evaluation of the influence of the IL anion through the phase behavior. Isobaric VLE data were measured at 0.05 MPa, 0.07 MPa and 0.1 MPa for IL mole fractions ranging between 0 and 0.7. The observed increase in the boiling temperatures of the mixtures is related with the strength of the interaction between the IL anion and water. The Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was further used to describe the obtained experimental data. The ILs were treated as molecular associating species with two association sites per IL. The model parameters for the pure fluids and the binary interaction parameter k_ij between water and ILs were determined by a simultaneous fitting to pure-IL densities, water activity coefficients at 298.15 K and VLE data at 0.1 MPa. Pure-IL densities, water activity coefficients and VLE data were well described by PC-SAFT in broad temperature, pressure and composition ranges. The PC-SAFT parameters were applied to predict the water activity coefficients at infinite dilution in ILs and a satisfactory prediction of experimental data were observed.